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Abstract—This paper considers an ambient backscatter com-
munication (AmBC) system with a generalized ambient radio
frequency (RF) source signal, i.e., allowing correlated ambient
RF source signal samples. A Neyman-Pearson (NP) criterion
based optimal detector statistic for a correlated RF source
signal in the AmBC system is obtained. To further analyze the
detection performance of the proposed optimal detector, closed-
form expressions of the probability of detection and probability
of false alarm are derived. Simulation comparisons illustrate the
proposed optimal detector’s superior receiver operating charac-
teristics (ROC) performance over the state-of-the-art detectors
under the considered framework. Further, the simulation section
demonstrates the ROC equivalence of the simulation performance
with the derived analytical expressions of the proposed detector.

Index Terms—Ambient backscatter communication (AmBC),
Neyman-Pearson (NP), correlated signal.

I. INTRODUCTION

Next-generation/ 6th-generation (6G) wireless standards en-
vision to have a seamless and ubiquitous connectivity between
the devices to support 4K video streaming, extended reality,
cloud computing, etc. Also, the Internet of Everything (IoE)
and broadband services use many low-power devices that
transmit intermittently [1]. Billions of low-cost, sensor-type
IoE connections are expected worldwide [2] for applications
such as smart cities, smart home systems, environmental mon-
itoring, and connected healthcare [3], [4]. Ambient backscat-
ter communication (AmBC) system holds the potential to
revolutionize the IoE [5]. AmBC system is an emerging
wireless technology that allows low-power devices [5]–[7] to
communicate by reflecting or absorbing the ambient radio-
frequency (RF) signals, such as cellular signals, TV radio,
and Wi-Fi [8], [9]. AmBC has the potential to transform
how we perceive and utilize IoE devices, enabling low-power
communication and increased spectrum utilization efficiency,
inspiring a new era of innovation and sustainability.

AmBC systems offer an eco-friendly and sustainable so-
lution for wireless communication in IoE applications [10],
[11]. However, this increased lifetime of the IoE devices and
efficient RF utilization comes at the cost of advanced signal
processing techniques to detect the weak backscatter signals in
AmBC systems, which is challenging considering a low signal-
to-noise ratio, interference, and fading [12]. Several research
studies [10]–[16], etc., have explored techniques to improve
signal detection performance for various AmBC applications
in this context. The authors of [13] demonstrated a working

prototype for the AmBC system for small sensing devices,
detecting signals using the instantaneous power of the received
signal. The simple implementation of the energy detectors
(ED) makes it a natural choice for adoption. For instance, the
works [10], [14] employ passband ED at the reader for signal
detection across varying numbers of RF source signal samples,
whereas [15]–[17] apply ED for uplink detection in AmBC
systems. Similarly, [16] considers RF signals and proposes
optimal and sub-optimal ED detectors with different system
settings. The works using ED [10], [11], [13]–[16], a simple-
to-implement detector, suffers from an inferior detection per-
formance in the low-signal or high interference/ noise power
regimes, lead to SNR wall and related problems [18], [19].

Some associated studies have proposed variations of the ED
[20], such as a maximum a posterior (MAP) based ED for the
Internet of Things (IoT) in green communication paradigms
[10], and a joint-ED for batteryless communication in IoT
[11]. The authors in [21] modified a maximum likelihood
(ML) technique which, upon further solving, results in ED.
There are a few related studies that have explored alternative
detection methods. For instance, authors in [22] investigated
the magnitude detector (MD) in AmBC systems, a particular
case of an improved energy detector (IED). The eigenvalue-
based detector in [23] utilizes the maximum eigenvalue of the
received signal covariance matrix at the backscatter receiver in
the AmBC systems. Some learning-based detection techniques
employ Support Vector Machine (SVM) and Random Forest
[24], k-Nearest Neighbors (kNN) [25] but require a large
training data. The RF signals from different cellular towers or
Wi-Fi routers often exhibit statistical dependence. The above
works predominantly consider scenarios with independent
RF source samples, often neglecting any correlation [26]–
[30]. The authors in [26] consider two spatially separated
sensor nodes in a wireless sensor network (WSN) that ob-
serve correlated source samples. Similarly, the works [27]–
[30] propose parameter estimation, joint transmission, efficient
communication strategies and Blind source separation (BSS)
while exploiting correlation in the source samples.

Hence this work presents a framework for realistic ambient
RF source samples, i.e., consider correlated RF signal samples.
The main contributions of the paper are as follows:

• An optimal detector statistic with correlated RF source
samples using the Neyman-Pearson (NP) criterion is
presented for the AmBC systems.

• Closed-form expressions for the probabilities of false



alarm (PFA) and detection probability (PD) are derived
to analytically characterize the detection performance.

• ROC simulation plots demonstrates a consistent detection
performance of the proposed detector over state-of-the-art
(SOTA) detectors. The derived analytical results validates
the superior performance of the proposed detector and
match their simulation counterparts.

Section II presents the AmBC framework, and Sections III
and IV present the optimal detection strategy and performance
characteristics. Finally, Section V presents simulation results,
and conclusions are presented in Section VI. This work uses
bold font capital letters representing a matrix, such as A. A
bold font small letter, such as a, denotes a vector. Regular
lowercase letters are used to represent scalars. The Hermitian,
determinant, and inverse of a matrix A are represented as
AH , det(A), and A−1, respectively. A complex Gaussian
distribution with a mean µ and variance σ2 is denoted as
CN (µ, σ2). The expectation of a random variable is denoted
by E[·] and Pr(·) for probability.

II. AMBC SYSTEM MODEL

Fig. 1 illustrates an Ambient Backscatter Communication
(AmBC) system that includes a tag/backscatter transmitter, a
reader/backscatter receiver, and an ambient RF source. Each
component is equipped with a single transmit/receive antenna.
The RF source broadcasts the RF signal s[n] at time n
to a legacy receiver/user. The tag listens for the broadcast
RF signal and adjusts its antenna impedance to modulate
and reflect the RF source signal back to the reader [13],
[14]. Let the vector s represent the concatenation of the RF
signal over N time samples, defined for 1 ≤ n ≤ N as
s = [s[1] · · · s[n] · · · s[N ]]T ∈ CN×1. The RF signal vector
s follows a complex Normal distribution with covariance
matrix Cs, expressed as s ∼ CN (0,Cs), common in practical
ambient sources like TV towers, Wi-Fi, and cellular signals
[26]. The flat Rayleigh-faded wireless channel coefficients
between the RF source and the reader, the RF source and the
tag, and the tag and the reader are denoted as hsr, hst, and htr,
respectively. The channel coefficients are assumed to be known
to the reader and follows a complex Normal distribution with
zero mean and unit variance. The signal vector x ∈ CN×1

received at the tag, corresponding to the transmission of the
RF signal vector s, is given by

x = hsts, (1)

which is modulated and sent to the reader. Let ζ denote the
scattering efficiency of the tag, and let the transmit symbol d
take values from the set d ∈ {0, 1}, where d = 1 indicates
reflection and d = 0 indicates no reflection. The data rate of
the tag is assumed to be N times that of the RF source. The
equivalent reflected tag signal xb, corresponding to the RF
source signal in equation (1), is obtained as

xb = ζdx. (2)
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Fig. 1. Ambient Backscatter Communication (AmBC) System with an
ambient RF source, a tag, a reader, and a legacy receiver.

The reader signal vector y ∈ CN×1 corresponding to the
transmission of the backscatter signal xb in (2) from the tag
and the RF source signal s, is obtained as

y = hsrs+ htrxb +w. (3)

The additive noise vector w ∈ CN×1, follows a complex
Normal distribution, i.e., w ∼ CN (0, σ2IN ), where IN is an
identity matrix of size N×N . Using (2) and (3), the equivalent
system model corresponding to the transmission of backscatter
signal and RF source signal in AmBC is given as

y = hsrs+ htrζdhsts+w. (4)

where the tag signal d takes binary values with equal prob-
ability. The optimal detector for the AmBC system in (4) is
presented next.

III. OPTIMAL DETECTOR IN THE AMBC

The detection problem of the AmBC system described in (4)
can be formulated as a binary decision problem, where H0 and
H1 represent the null hypothesis and alternative hypothesis,
respectively, corresponding to the tag signal transmission states
d = 0 and d = 1. The received signal y at the reader for the
transmission of the binary symbols d ∈ {0, 1} is expressed as

y =

{
h0s+w; H0

h1s+w; H1

. (5)

where h0 = hsr and h1 = hsr + ζhtrhst.

Theorem III.1. The NP-based optimal detection statistic
To(y) for the PDFs p(y|H0) in (8) and p(y|H1) in (9) for
the correlated RF source signal in the AmBC system is

To(y) =
1

σ6
yH [X1 −X0]y

H1

≷
H0

γ′, (6)

where γ′ is the decision threshold defined as γ′ = ln(γ′′) +
ln(det(Cy|1))− ln(det(Cy|0)), γ′′ is decision threshold, and
Xi =

(
IN + (σ2/|hi|2)C−1

s

)−1
for i ∈ {0, 1}.

Proof. The distributions of the received signal y in (5) corre-
sponding to the two hypotheses be obtained as

y ∼

{
CN (0, |h0|2 Cs + σ2IN ); H0

CN (0, |h1|2 Cs + σ2IN ); H1

. (7)



The above conditional PDFs when considering Cy|i =

|hi|2 Cs + σ2IN for i ∈ {0, 1}, reduces to

p(y|H0) ∼ CN (0,Cy|0) (8)
p(y|H1) ∼ CN (0,Cy|1), (9)

where p(y|Hi) is the conditional PDFs of y corresponding to
hypothesis Hi for i ∈ {0, 1}. Given the conditional PDFs of
y in (7), the NP based optimal log-likelihood ratio (LLR) test
L(y) can be expressed as

L(y) = ln

(
p(y|H1)

p(y|H0)

)
H1

≷
H0

ln γ′′. (10)

The conditional PDFs p(y|Hi) for i ∈ {0, 1} in (8) and (9) is
defined [31] as

p(y|Hi) =
1

πNdet(Cy|i)
exp

{
−yHC−1

y|iy
}
. (11)

Matrix inversion lemma [31] is used to further simplify C−1
y|i

in (11) to (12).

C−1
y|i = (σ2IN +|hi|2 Cs)

−1

=
1

σ2
IN − 1

σ6
Xi, (12)

where Xi =
(
IN + (σ2/|hi|2)C−1

s

)−1

for i ∈ {0, 1}. Using
the PDFs p(y|Hi) for i ∈ {0, 1} and Xi in the LLR (10) will
yield the detection statistic (6) in Theorem III.1.

The next section characterizes the detection performance of
the optimal detector statistic presented in Theorem III.1.

IV. PERFORMANCE ANALYSIS OF THE PROPOSED
OPTIMAL DETECTOR

This section derives the detection performance of the pro-
posed text in (6) upon obtaining its conditional PDF. The
detection statistic at the reader is further simplified to obtain
tractable conditional PDFs of the detection statistic corre-
sponding to the two hypotheses. Let the singular value decom-
position of RF source signal covariance matrix Cs be Cs =
UΣUH , where U ∈ CN×N is a unitary matrix and the diag-
onal matrix Σ contains singular values σ1, · · · , σn, · · · , σN at
its principle diagonal with σn−1 ≥ σn > 0, for 1 < n ≤ N .
The Xi in (12) is simplified as

Xi =
(
IN + (σ2/|hi|2)C−1

s

)−1

=
(
IN + (σ2/|hi|2)(UΣUH)−1

)−1

(13)

=
(
IN + (σ2/|hi|2)UΣ−1UH

)−1

=

(
U

(
IN + (σ2/|hi|2)Σ−1

)
UH

)−1

= U
(
IN + (σ2/|hi|2)Σ−1

)−1

UH , (14)

where (13) follows by using the decomposition of Cs and
further solving gives (14). For Xi in (14), X1−X0 = UΛUH

such that the diagonal matrix Λ, defined in (15), contains the

singular values λn, given in (16), at its principal diagonal with
λn−1 ≥ λn for 1 < n ≤ N as

Λ =

(
IN +

σ2

|h1|2
Σ−1

)−1

−
(
IN +

σ2

|h0|2
Σ−1

)−1

(15)

λn =
1

1 +|h1|2 σ2

σn

− 1

1 +|h0|2 σ2

σn

, n = 1, 2, · · ·, N. (16)

The entries of the diagonal matrix Λ are assumed to be non-
negative, i.e., λn ≥ 0, ∀n in (16), which holds when |h1|2 ≥
|h0|2. Using the simplified form of X1 − X0, the detection
statistic equivalently reduces to

To(y)
.
= yH(X1 −X0)y (17)

= yHUΛUHy (18)

To(ỹ) = ỹHΛỹ

=

N∑
n=1

λn|ỹn|2
H1

≷
H0

γ, (19)

where the symbol .
= in (17) shows the equivalence upto scal-

ing, and (18) follows from the substitution mentioned earlier,
(19) is obtained by ỹ = UHy = [ỹ1, · · · , ỹN ]T ∈ CN×1, and
threshold γ from γ = σ6γ′. The PDFs of y in (7) using the
transformation ỹ = UHy corresponding to the two hypotheses
reduces to

p(ỹ|Hi) ∼ CN (0, |hi|2 Σ+ σ2IN ), for i ∈ {0, 1}. (20)

Therefore the element n of the vector ỹ, i.e., ỹn follows a
complex Normal PDF p(ỹn|Hi) ∼ CN (0, σ̃2

n|i) where σ̃2
n|i =

|hi|2 λn+σ2. Let an|i =
ỹn

σ̃n|i
for i ∈ {0, 1}, i.e., p(an|i|Hi) ∼

CN (0, 1). Using the PDFs presented above, the probabilities
of false alarm and detection are presented in the Lemma IV.1
below.

Lemma IV.1. The false alarm (PFA) and probabilities of
detection (PD) for the correlated RF source signal-based
optimal detection statistic in (6) for the AmBC system are
given as

PFA =
∑N

n=1 An exp
(

−γ
2αn

)
(21)

PD =
∑N

n=1 Bn exp
(

−γ
2βn

)
, (22)

where the constants An and Bn are defined as An =∏N
l=1,l ̸=n

1
1−αl/αn

and Bn =
∏N

l=1,l ̸=n
1

1−βl/βn
, with αn =

λnσ̃
2
n|0 and βn = λnσ̃

2
n|1.

Proof. The proof for the two probabilities are given in the
following two subsections.

A. Probability of False Alarm (PFA)

The probability of false alarm refers to the probability of
decoding a symbol as 1 (reflect the RF source signal) when
the transmitted symbol was 0 (absorb the RF source signal),
i.e., to decide in favor of alternative hypothesis H1 when the



null hypothesis H0 occurred. As defined next in (23) and is
further solved as

PFA = Pr
{
To(ỹ) > γ;H0

}
(23)

= Pr


N∑

n=1

λn |ỹn|2 > γ;H0

 (24)

= Pr


N∑

n=1

αn|an|0|2 > γ

 (25)

=

∫ ∞

γ

pT (t) dt, (26)

where (24) is obtained from (19), (25) is obtained using
αn = λnσ̃

2
n|0, an|0 = ỹn

σ̃n|0
. Observe an|0 ∼ CN (0, 1) and

hence |an|0|2 follows a Chi-squared PDF with two degrees of
freedom, i.e., |an|0|2 ∼ χ2

2. Also, pT (t) in (26) denotes the
probability density function of the test To(ỹ) corresponding
to the null hypothesis, defined next in (27) as

pT (t) =

{
1
2π

∫∞
−∞ ϕT (ω)e

−jωtdω t ≥ 0

0 t < 0
, (27)

where ϕT (ω) denotes the characteristic function of the test
statistic To(ỹ) corresponding to the null hypothesis [31], [32]
and is derived next

ϕT (ω) = E
{
exp

(
jωTo(ỹ)

) }
= E

{
exp

(
jω

N∑
n=1

αn|an|0|2
)}

=

N∏
n=1

E
{
exp

(
jωαn|an|0|2

)}
(28)

=

N∏
n=1

1

1− 2jαnω
(29)

=

N∑
n=1

An

1− 2jαnω
. (30)

Using the independence, the summation of N term is con-
verted to the product of N term to get (28). Use |an|0|2 ∼ χ2

2

in the the characteristic function to get (29), and use the partial
fraction [31] to obtain (30) where

An =

N∏
l=1,l ̸=n

1

1− αl/αn
. (31)

Using the PDF pT (t) in (27) for the test To(ỹ), t ≥ 0 and the
characteristic function in ϕT (ω) (30), the probability of false
alarm (PFA) defined in (26) is simplified to

PFA =

∫ ∞

γ

pT (t) dt

=

∫ ∞

γ

1

2π

∫ ∞

−∞

N∑
n=1

An

1− 2jαnω
e−jωtdω dt

=

∫ ∞

γ

N∑
n=1

1

2π

∫ ∞

−∞

An

1− 2jαnω
e−jωtdω dt (32)

where (32) is obtained on interchanging the order of the
summation and integration, and is further simplified as

PFA =

∫ ∞

γ

N∑
n=1

F−1
−t

{
An

1− 2jαnω

}
dt

=

∫ ∞

γ

N∑
n=1

1

2αn
An exp

(
−t

2αn

)
dt (33)

=

N∑
n=1

1

2αn
An

∫ ∞

γ

exp

(
−t

2αn

)
dt

PFA =

N∑
n=1

An exp

(
−γ

2αn

)
.

where (33) is obtained on taking the inverse Fourier transform
(F−1

−t ). Hence, the probability of false alarm PFA for the
optimal test statistic in (6) corresponding to the null hypothesis
H0 is derived in (21).

B. Probability of Detection

The probability of detection (PD) in (34) refers to the
probability of deciding in favor of alternative hypothesis H1

when the alternative hypothesis H1 occurred. The proof for the
PD in (22) can be obtained along similar lines as the proof of
the PFA in (21). An outline of the same is presented next

PD = Pr
{
To(ỹ) > γ;H1

}
(34)

= Pr


N∑

n=1

λn |ỹn|2 > γ;H1

 (35)

= Pr


N∑

n=1

βn|an|1|2 > γ

 (36)

=

∫ ∞

γ

pT (t) dt, (37)

where (35) is obtained from (19), (36) is obtained using βn =
λnσ̃

2
n|1 and an|1 = ỹn

σ̃n|1
. Observe an|1 = ỹn

σ̃n|1
∼ CN (0, 1)

and hence |an|1|2 follows a Chi-squared PDF with two degrees
of freedom, i.e., |an|1|2 ∼ χ2

2. The PDF pT (t) of the test
statistic To(ỹ) corresponding to H1 is similar to the definition
in (27) where ϕT (ω) now denote the characteristic function
of To(ỹ) corresponding to H1 [31], [32] and is derived to

ϕT (ω) =

N∑
n=1

Bn

1− 2jβnω
, (38)

where Bn =
∏N

l=1,l ̸=n
1

1−βl/βn
. The PD defined in (37) be

further simplified using (38) to get (22).

The following section presents the simulation analysis.
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Fig. 2. ROC plots for the optimal detector (Opt.) statistic To(y) in Theorem
III.1, when compared with the ED [15], MD, IED [22], M-EVD [23], SVM,
Random Forest (Ran. F) [24], and kNN [25] at SINR ∈ {−5, 3} dB.
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Fig. 3. ROC simulations (Sim) and the analytical (Ana) plots for the optimal
detector statistic To(y) presented in the Lemma III.1 at varying SINR ∈
{−5, 0, 5, 10} dB.

V. SIMULATION RESULT

Consider an AmBC system in (4) where each of the channel
gain factors hsr, hst, and htr, each follows a zero-mean
complex Gaussian distribution with unit variance, known at the
reader. Consequently, their magnitudes adhere to a Rayleigh
distribution, realistically representing multipath effects in non-
line-of-sight environments. The transmitted backscatter tag
symbol d ∈ {0, 1} assumes equiprobable binary values and
RF source signal power (Ps), that contributes to interference.
The RF source signal vector s follows a complex Normal
distribution having zero mean and covariance matrix Cs

expressed as s ∼ CN (0,Cs). The covariance matrix, defined
in (13), is given by Cs = UΣUH , where U is a unitary
matrix. The entries of the diagonal matrix Σ are evenly spaced
between 1 and N , and are appropriately normalized to (Ps).
Unless specified otherwise, the transmission rate of the RF
source signal is assumed to be twice that of the tag signal
(N = 2), and the reflection coefficient ζ is set to unity.
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Fig. 4. ROC plots for the optimal detector statistic To(y) in Theorem (III.1)
at SINR = 0 dB at (a) different ratios of the data rates of the RF source
to the tag signal, N ∈ {2, 4, 6} with Ps = 0.01 watts (b) different Ps ∈
{0.001, 0.5, 1} watts, and N = 2.

ROC comprehensively evaluates a detector across all decision
thresholds, thus ROC comparisons are presented between the
proposed detection statistic in (6) in Theorem III.1 and state-
of-the-art methods: the magnitude-based detector (MD) [22],
which computes the sum of the magnitude of the received
signal y in (4); IED [22] sums their p-th powers; ED [15]
analyzes the energy of the received signal; and the M-EVD
[23] evaluates the maximum eigenvalue of the received signal’s
covariance matrix. Also, the learning-based approaches, like
kNN [25] classify signals by comparing their similarity to
known signals; SVM [24] finds the best boundary to separate
signals, and Random Forest [24] uses an ensemble of decision
trees for detection. However, the learning-based approaches
are additionally required to train with the tag bit d ∈ {0, 1}
per SNR with 105 labeled samples.

Fig. 2 compares the ROC performance of the proposed
optimal statistic detector in (6) with the ED, MD, and M-EVD
at the varying levels of the signal strength ratio to interfer-
ence plus noise (SINR) ∈ {−5, 3} dB. The figure illustrates
the superior performance of the proposed detector over the
SOTA detectors. Also, the performance of the detectors is
observed to improve with the increase in the SINR levels.
Fig. 3 shows the ROC performance equivalence between the
results obtained via simulation and the analytical probabilities
derived in (21) and (22) for the proposed detectors at different
SINR ∈ {−5, 0, 5, 10} dB. Fig. 4 presents the PD vs. PFA



performance comparisons of the proposed detector statistic in
Theorem III.1 at SINR = 0 dB for varying the ratios of the
data rates of the RF source to the tag signal, (N) and Ps.
The PD axis is limited to a range to highlight the relevant
portion. Fig. 4(a) presents the ROC plot for N ∈ {2, 4, 6}.
The detection performance of the introduced detector is readily
observed to improve with an increase in the factor N . A similar
trend in Fig. 4(b) for varying levels of Ps ∈ {0.001, 0.5, 1}
watts is observed where the performance of the proposed
detector improves with a decrease in Ps.

VI. CONCLUSION

This work introduced a novel optimal detector with cor-
related RF source signals in AmBC systems. This approach
expands upon existing frameworks found in the literature. The
ROC comparisons in the simulation section demonstrated that
the proposed detector outperformed state-of-the-art ED, along
with the allied MD, M-EVD, IED, SVM, Random Forest, and
kNN detectors. Additionally, the work derived closed-form ex-
pressions for PD and PFA within the framework of correlated
RF source signals in the AmBC system. The results confirmed
the ROC analysis, showing a strong agreement between the
simulation outcomes and their analytical counterparts.
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